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The structure of diffusing planar and axisymmetric vortices of the hyperviscous 
Navier-Stokes equations is studied for different orders of the dissipative operator. It 
is found that, except for the classical Newtonian case, the vorticity decays at large 
distances by means of oscillatory tails, containing circulation of alternating signs. This 
oscillation becomes stronger for large hyperviscosity orders, and the limit of infinite 
order is studied. It is argued that these solutions would become unstable for large 
enough Reynolds numbers, and may contribute non- trivial spurious dynamics to flow 
simulations using hyperviscosity. 

1. Introduction 
Hyperviscosity, the substitution of higher iterations of the Laplacian, V2n,  for the 

second-order dissipative operator of the Navier-Stokes equations, has been used often 
in the numerical simulation of turbulent flows to extend the range of the inviscid 
inertial cascade which can be achieved with a given resolution. The hyperviscosity 
order is chosen in most cases as n = 2 (Santangelo, Benzi & Legras 1989; McWilliams 
1990; Ohkitani 1991; Nakamura, Takahashi & Nakano 1993) but is occasionally 
pushed to higher values, n = 8 (Babiano et al. 1987; Borue 1993; Maltrud & Vallis 
1993; Smith & Yakhot 1993). While it is usually stated that the choice of the dissipation 
mechanism does not have a strong influence on the physics of the inertial range 
(Santangelo et al. 1989), it is conceivable that the different equations might have 
unexpected secondary effects on the flow and that, in particular, they may result in a 
different balance of convective and viscous terms in the crossover spectral range at the 
near-dissipative scales (Maltrud & Vallis 1993). Since it has been documented that this 
range is dominated, or at least characterized, by the presence of compact vorticity 
structures, both in two-dimensional (Fornberg 1977; McWilliams 1984; Dritschell993 
and references therein) and in three-dimensional turbulent flows (Kuo & Corrsin 1972; 
Siggia 1981; Jimenez et al. 1993 and references therein), it may be of some interest to 
study how these structures are affected by the use of different orders of hyperviscosity, 
Moreover, once this is done, it may be possible to learn more about the significance of 
those compact structures in natural Newtonian flows by purposely introducing 
dissipation of different orders in numerical simulations of turbulence and by observing 
the resulting changes. 

In this paper we study the structure of isolated hyperviscous vorticity structures, 
both planar and axisymmetric. In the next section we present solutions for the planar 
vortex sheet, valid both for the limit of self-similar hyperviscous spreading and for the 
state of equilibrium between diffusion and a plane strain. The equivalent axisymmetric 
problem is studied in 43, followed in $4 by some discussion of stability and by a 
numerical example. 
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2. The planar vortex sheet 
Consider the Navier-Stokes equations for an incompressible hyperviscous fluid 

a,u+u-Vu+Vp = v ( - A ) ~ u ,  
v * u  = 0, 

where v is a hyperviscosity coefficient which should be positive to ensure well-posedness 
of the equations. We define n as the order of the hyperviscosity operator. In this paper 
we assume it to be an integer, although in a pseudospectral simulation code, where the 
Laplacian is substituted by the square of the wavenumber magnitude, it could be an 
arbitrary real number. That extra freedom may be useful in some cases to study the 
evolution of flow properties with the order of hyperviscosity. 

One of the simplest solutions to those equations is a diffusing vortex layer driven by 
a uniform plane strain, 

in which the flow is assumed to depend only on the coordinate x, except for the driving 
velocity. We will use from now on dimensionless quantities, although the normalization 
will vary for the different cases. In the definition of the normalizations, the 
dimensionless variables will be denoted by primes, but those primes will be left out of 
the equations themselves. With this convention, the equation for the collapsing vortex 
layer becomes 

where w is the only non-zero component of the vorticity, directed along the z-axis, and 
the dimensionless variables are defined as 

u =-ax, v = 0, w = az, (2) 

r:,o-a,(xw)+(-1)12a~o= 0, (3) 

XI = x ( a / v ) l y  t’ = at, w /  = w / a .  (4) 
We will be specially interested in the steady Burgers’ sheet, which is the long-time limit 
of the solution to (3) with the vorticity decaying to zero as x f k co. 

The same equation is relevant to the two-dimensional case in which the vortex layer 
spreads by diffusion without any driving strain. The appropriate ‘ similarity ’ variables 
are 

and the resulting vorticity equation is identical to (3). The interesting solution is then 
the self-similar spreading layer in which the normalized vorticity is independent of t‘. 

A first idea of the character of the steady solutions to (3) can be obtained from the 
WKB approximation to their behaviour at large 1x1. Consider x > 0 and substitute (see 
e.g. Bender & Orszag 1978, pp. 484497) 

x’ = ~ / ( 2 n v t j ’ / ~ ~ ,  t’ = (1/2nj log t, w = t-lIzn o‘(x’, t’) ,  (5 )  

w - exp [S,(xj+S,(x)+-..], So B S,  B ..., So B 1. (6) 

(dSo/dx)2np1 = (- (7) 

(8) 

Equating comparable terms we obtain the eikonal equation 

which has 2n- 1 solutions, 

which are distinguished by the 2n- 1 complex roots CJ. The lowest-order WKB 
approximation takes the form 
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FIGURE 1. Vorticity distributions for planar diffusing vortex sheets with different orders of 
hyperviscosity. In order of increasing oscillation amplitude, n = 1, 2 ,  3, 4, a. (a) Vorticity. (h) 
Integrated circulation from planc of symmetry, y (x )  = J”; o(x) dx. 

Of these solutions the only relevant ones are those for which the real part of u is 
negative, so that the exponential factor decays as x increases. There are in general n 
such solutions, corresponding to [n/2]  pairs of complex u, plus one solution with u = 

- 1 if n is odd. It is interesting that, except for the Newtonian case of n = I ,  some 
of the solutions correspond to complex u, and decay at infinity with oscillatory tails 
containing vorticity of both signs. The classical viscous layer, with a Gaussian vorticity 
distribution (Batchelor 1967, pp. 272-273), is the only one whose tails decay to zero 
monotonically. 

For each hyperviscosity order there is a single family of solutions satisfying the 
condition that the vorticity vanishes at infinity. To show that this is true. we need to 
find conditions that determine a unique linear combination of the n acceptable WKB 
solutions. From the symmetry of the driving flow we can assume that the solution itself 
is symmetric around x = 0, so that all the odd derivatives of w vanish at the origin. This 
assumption will be justified later, and supplies n - 1 conditions to fix all but one of the 
coefficients needed. The remaining one is an amplitude scale that is given by the total 
(conserved) circulation per unit sheet area, 

cc 

y = ( w(x) dx. 
J --n3 

The numerical solution for several hyperviscosity orders, with y = 1, is shown in figure 
1 (a). It is seen that oscillations are present for all but the Newtonian case, and that they 
become stronger as the order increases. It also follows from (8) that the decay of the 
vorticity in the tails becomes increasingly exponential as n increases, in contrast to the 
Gaussian decay for n = 1. 

It is of some interest to understand the limiting behaviour of the solutions in the 
‘ ultraviscosity’ case n +co. In this limit the numerical solution becomes difficult, but 
a different representation is useful. Consider the Fourier transform of w,  

1 r., 
Q(k, t )  = & j  o(x, t j  ePkX dx. 

-Ti 



172 J. Jipnknez 

Equation (1 1) can be transformed into 

at 52 +ka, 52 + k2'Q = 0, 

which is hyperbolic in (k, t), with characteristics given by 

along which the equation can be written as an ordinary differential equation and 
integrated directly as 

dk/dt = k, k = k,  et, (13) 

(14) 
d52 
dk 

k -  + k""52 = 0, Q(k, r) = Q(k,, 0) exp [(k:" - k2")/2n]. 

As t+m, it follows from (13) that ko+ 0 for any fixed k,  and the Fourier transform of 
the asymptotic steady solution is given by 

Y 
2n 

52(k) = Q(0,O) exp (- k2"/2n) = - exp (- k2'/2n). 

Note that this procedure results directly in a unique solution, which appears as the 
longtime limit of the initial value problem. The fact that the Fourier transform in (15) 
is real shows that the solution obtained in this way is symmetric with respect to x = 
0. This solution is selected because the process by which the transformed equation (12) 
was obtained assumes implicitly that the solution decays at x + f cc fast enough for a 
continuous Fourier transform to exist everywhere on the real axis. In fact, the solution 
can be expressed as a Fourier integral 

W ( X )  = 2 cos (kx) O(k) dk. lo' 
For n = 1 it follows from (15) that the spectrum is Gaussian, and so is the solution, in 
agreement with the classical result. In the ultraviscosity limit, the Fourier transform 
becomes a step function, constant below the Burgers' scale Ikl < 1, and falling abruptly 
to zero beyond it. Direct substitution in (16) provides the solution, 

(17) 
which is included in figure 1 for comparison. In figure 1 (h) we show the circulation 
contained between the plane of symmetry and a given x. It is seen that the oscillations 
in the tail contain a substantial fraction of the total circulation of the layer, even for 
the lowest hyperviscosity order, n = 2, raising the question of whether the alternating 
sign of the vorticity would become important in numerical simulations of turbulence, 
inducing, for example, spurious instabilities in the interaction between structures. 

w,(x) = y sin ( x ) / n x ,  

3. Axisymmetric vortices 

steady Burgers' vortex, driven by an axial strain 
The axisymmetric case can be treated similarly to the planar sheet. Consider first the 

u, = CLZ, u, = +zr .  (18) 
We will assume that the distribution of axial vorticity varies only radially and is 
independent of the axial coordinate z ,  and that all the other vorticity components are 
zero. The normalized vorticity equation is 
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FIGURE 2. Vorticity distributions for axisymmetric diffusing vortices with different orders of 
hyperviscosity. In order of decreasing vorticity at the axis, n = 1, 2, 3, 4, co. (a) Vorticity. (h) 
Integrated circulation from axis, y(r) = 2x ru(r) dr. 

where the normalized radius is defined as 

r' = r ( a / 2 ~ ) l ' ~ ~ ,  (20) 

while the dimensionless time and vorticity are as in (4). As in the case of the vortex 
sheet, the equation for the decay of an axisymmetric vortex, without a driving strain, 
can be put into the form (19) by a transformation similar to (9, 

r' = r/(nvt)l'zn, t' = (1 / n )  log t ,  10 = tP1/" w'(r', t'). (21) 

The behaviour of the vorticity at large radius is obtained as before, and the eikonal 
equation is identical in both cases. The leading approximation is 

where is the same multiple root as above. The presence and character of the tail 
oscillations are therefore also identical. As in the previous case, there is a unique family 
of continuous solutions for each order, decaying to zero at infinity. The necessary 
conditions are now that all the odd radial derivatives vanish at the axis, plus the given 
circulation per unit axial length. Figure 2(a, b) gives some examples of solutions for 
different orders. The tail oscillations now appear milder than in the planar case, but the 
amount of circulation that they contain is similar. 

The ultraviscosity limit can also be studied by spectral methods. The two- 
dimensional Fourier transform of an axisymmetric function depends only of the 
modulus of the wavenumber vector, k = (k: + k;)li2, and can be expressed as a one- 
dimensional integral, known as the Hankel transform (e.g. Carrier, Krook & Pearson 
1966, pp. 366-367) 

1 fa, 
1 -  

Q(k) = - J rw(r)JO(kr) dr, 
27t 0 

where Ju is the zeroth-order Bessel function of the first kind. The properties of this 
transform are similar to those of the classical Fourier formula, of which it is just a 
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particular formulation. In fact, the transform of ( 1  9) is (1 2), as in the planar case, and 
we conclude immediately that the Hankel transform of the solution is also identical, 
although with a different normalization factor in terms of the circulation 

Y 
4x2 

Q(k) = ____ exp ( -k2"/2n). 

The Hankel transform can be inverted to obtain a general quadrature expression for 
the vorticity, 

W ( Y )  = 2x kQ(k) J,(kr) dk, (25)  lom 
which, as n +co and the spectrum tends to a step function, approaches the ultraviscosity 
limit 

This solution has been included in figure 2 for comparison. 

w&) = yJ,(r)/27cr. (24) 

4. Discussion 
The most striking characteristic of the solutions discussed here is the presence of 

vorticity of opposite sign in the periphery of the main structure. Even if these are 
solutions dominated by diffusion, the Reynolds number based on the tangential 
velocity is not necessarily small, and inviscid instabilities may become important if it 
is chosen large enough. The consequences are different for the different flows. In the 
case of the planar sheet, the sheet itself is unstable to Kelvin-Helmholtz instabilities, 
and the presence of an extra instability in the weaker layer of vorticity of opposite sign 
is probably not important by comparison. 

The axisymmetric case is different. A circular vortex is stable to two-dimensional 
perturbations as long as the radial distribution of vorticity is monotonic, but may 
become unstable otherwise (Rayleigh 1880). This is essentially again the Kelvin- 
Helmholtz instability and takes the form of azimuthal waves which reach their 
maximum intensity at the radial location where the vorticity reaches an extremum 
which, in this case, would be the first vorticity minimum at the periphery. Eventually, 
these waves would saturate at an amplitude which is a low multiple of the maximum 
vorticity of the unstable layer, which is itself a few percent of the maximum vorticity 
of the main vortex. These waves are weak compared to the main vortex but, as noted 
above, contain a substantial circulation, and may modify, for example, the interaction 
of vortices in two-dimensional simulations of turbulence. 

Another example of non-trivial dynamics due to the spurious vorticity generated by 
hyperviscosity is shown in figure 3, which displays four snapshots of a periodic array 
of vortices of the same sign, diffusing under hyperviscosity with n = 2. A weak band 
of negative vorticity appears on either side of the array, and develops waves which 
travel with a velocity close to that of the free stream at infinity. Even if the intensity 
of the negative vorticity is only 2-3 % of the maximum vorticity at the centre of the 
vortices, the presence of the wave is enough to induce a visible perturbation in their 
shape. In this particular case, and with the periodicity imposed by the numerical 
scheme, the flow decays to a uniform vortex layer like the one analysed in $2. In a 
computation with unlimited horizontal periodicity the initial vortex array would be 
unstable to pairing, and that instability would probably be triggered sooner by the 
spurious vorticity waves on the periphery. 
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FIGURE 3. Vorticity maps for the simulation described in text. Circulation of each vortex: y = 25. 
Wavelength: Ax = 2rr. v = 0.0025. Negative isolines, solid: ( I )  = -0.11, -0.01, (0.02). Positive 
isoline, dashed: w = 1. Maximum vorticity at vortex centre: u x 5. Time between consecutive frames, 
(a)-(d): At = 1. Numerical scheme is fully spectral, 2562 modes, with vertical boundary conditions 
mapped to infinity. Each map contains the upper half of a full wavelength. 

Other instabilities are possible, although their influence on the behaviour of the main 
vortex is also likely to be limited. For example, if we consider columnar, rather than 
two-dimensional vortices, the fact that the circulation decreases locally at their 
periphery (figure 2 b) would make them subject to centrifugal instabilities (Rayleigh 
1880). 

An interesting property of the hyperviscous solutions is the sharpness of their 
spectral cutoff, which goes from a smooth Gaussian fall-off for Newtonian viscosity, 
to a step function in the ultraviscosity limit. This is in agreement with the intuitive 
effect of hyperviscosity and, although there is no clear relation between spectral 
characteristics and dynamics, the presence of the cutoff may be useful in diagnosing the 
presence and relative weight of the different types of structures in turbulent simulations. 
A more disturbing possibility is that the presence of the negative vorticity might have 
global effects on the hyperviscous calculations of two-dimensional turbulence, specially 
in those using higher orders. It was shown in Dritschel (1993) that turbulence 
calculations using a dissipation model different from viscosity behave differently in 
some respects from those in McWilliams (1990), which use hyperviscosity with i-z = 2. 
While it is not clear in that particular case how much of the effect is due to numerical 
artifacts, it strengthens the argument that details of the dissipation mechanism may 
influence bulk properties of turbulence, and that hyperviscosity might not be an 
altogether benign way of increasing the inertial range of turbulent flows. 

This work was partially supported by the Human Capital and Mobility program of 
the EEC under contract ERBCHRXCT920001. 
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